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An Adaptive Mesh-Independent Numerical Integration for 
Meshless Local Petrov-Galerkin Method 

Jin Yeon Cho*, Young Burm Jee 
Department o f  Aerospace Engineering, College o f  Engineering, Inha University, 

253 Yong-Hyun Dong, Nam Gu, Incheon, 402-751, Korea 

In this paper, an adaptive numerical integration scheme, which does not need non 

overlapping and contiguous integration meshes, is proposed for the MLPG(Meshless  Local 

Petrov-Galerkin) method. In the proposed algorithm, the integration points are located between 

the neighboring nodes to properly consider the irregular nodal distribution, and the nodal 

points are also included as integration points. For numerical integration without well-defined 

meshes, the Shepard shape function is adopted to approximate the integrand in the local 

symmetric weak form, by the values of the integrand at the integration points. This procedure 

makes it possible to integrate the local symmetric weak form without any integration meshes 

(non-overlapping and contiguous integration domains).  The convergence tests are performed, 

to investigate the present scheme and several numerical examples are analyzed by using the 

proposed scheme. 
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I.  I n t r o d u c t i o n  

Because of the flexibility in dealing with engi- 

neering and physical problems without geometri- 

cal meshes, meshless approaches are receiving 

considerable attention in the field of computa- 

tional modeling and simulation of engineering 

problems. As a result, several methods have been 

proposed under the concept of a so-called mesh- 

less approach, such as smooth particle hydro- 

dynamics (SPH)(Lucy,  1977), diffuse element 

method (DEM)(Nayro les  et al., 1992), element 

free Galerkin method (EFG)(Belytschko et al., 
1994; Organ et al., 1996), reproducing kernel 

particle method ( R K P M ) ( L i u  et al., 1995 and 

1996), finite point method (Ofiate et. al., 1996), 

hp-clouds method (Duarte and Oden, 1996), 
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partition of unity method (PUM)(Babugka and 

Melenk, 1997), local boundary integral equation 

method (LBIE) (Zhu, Zhang, and Atluri,  1998a, 

b), meshless local Petrov-Galerkin method 

(MLPG) (Atluri and Zhu, 1998a, b ; Atluri,  Cho 

and Kim, 1999 ; Atluri, Kim and Cho, 1999), and 

the method of finite sphere (De and Bathe, 2001). 

In a truly meshless approach, there are two 

germane aspects. One is a non-element inter- 

polation technique. The other is a non-element 

approach for integrating the weak form, which 

was not recognized until the work of Atluri and 

Zhu ( 1998a, b). To be a true meshless, a meshless 

method should equip with not only a non-ele- 
ment interpolation scheme, but also a non-ele- 

ment scheme for integrating the weak form. 

Of course, most of the so-called meshless me- 

thods in literature are based on non-element in- 

terpolation techniques, such as the Shepard in- 

terpolation technique (Shepard, 1968), moving 

least squares interpolation (MLS) (Lancaster and 
Salkauskas, 1981), reproducing kernel particle 

method (RKPM),  the partition of unity method 
(PUM),  and the generalized moving least squares 
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interpolation (GMLS)(Atluri ,  Cho, and Kim, 

1999a), which do not need any elements for cons- 

tructing the interpolation functions for the un- 

known variables. 

However, most of the meshless methods still 

rely on global meshes for integration purpose, 

except for the MLPG method. Additionally, con- 

trary to the major reason for the use of a meshless 

method, the issue of the use of randomly distri- 

buted nodes in the problem domain has not been 

sufficiently dealt with in previous works. Most of 

the previously published papers deal with nodes 

that are uniformly distributed in the problem 

domain. 

In view of this situation, an adaptive numerical 

integration scheme for MLPG method is pro- 

posed in this paper, in order to increase the 

flexibility in dealing with randomly distributed 

nodes, while preserving the non-element integra- 

tion nature of MLPG method. 

2. Moving  Least  Squares  
Interpolat ion 

In this section, the moving least squares in- 

terpolation technique is reviewed. To achieve a 

non-element type interpolation, a meshless meth- 

od uses a local interpolation or approximation, to 

represent the trial function, with the values (or 

the fictitious values) of the unknown variable at 

some randomly located nodes. The moving least 

squares interpolation is one such popular scheme 

(along with PUM, RKPM, Shepard function, 

etc.) which does not need any element informa- 

tion. Additionally, the smoothness required for 

the approximation function can be easily achieved 

by the moving least squares interpolation tech- 

nique. Thanks to these merits, the moving least 

squares technique may be thought as a good 

candidate for approximating the unknown vari- 

ables in boundary value problems. 

Consider a continuous function u defined in a 

domain Q. where the (fictitious) nodal values at 

the scattered points x~(1 <--i~n) in .(2, that enter 

the interpolation are given as /.~. To approximate 

the distribution of function u in ~Q, the global 
approximation form u h (x) is defined as follows : 

m 

U(X) ~--Uh(X) = p r ( x ) a ( x )  = .=~lp/(x)ai(x), (1) 

for all x ~ Q  

where p r ( x ) = [ p l ( x ) ,  P z ( x ) , " ' ,  Pm(x)] is a 

p-basis. For example, the ( m - - I ) - t h  order 

polynomial p-basis in one dimension has the 

following form : 

pT (x /=  [ l, x, x 2, ..., x ~-'] (2) 

In two dimensions, a linear polynomial p-basis is 

written as 

p r ( X ) = [ l ,  X, y] (3) 

Similarly, a quadratic polynomial p-basis is writ- 

ten as 

Or(X) =[1 ,  X, y, X 2, Xy, y2~ (4) 

Meanwhile, a ( x ) = ~ a l ( x ) ,  az(x), ..., am(X)] z 

is a vector of undetermined coefficients, whose 

values can vary with the position x E Q .  The 

coefficient vector a(~)  at each position x = x  will 

be determined by a local weighted least square 

approximation Ux(X) of the function u ( x ) ,  in a 

sufficiently small neighborhood nbd(Y~) of ~. 

A local approximation ux(x),  for each point 

~Ef2 ,  is defined as 

u(x) ~ Ux(X)=pr(x)a(£), 
(5) 

for all x ~ n b d ( ~ )  

In order that the local approximation is the best 

approximation to u, in a certain least square 

sense, the coefficient vector a (:~) is selected as the 

m × l  vector that minimizes the weighted least 

square discrete Lz-error norm defined by 

= ~ ,  Jx(b)  w~(x) [pr  ( x , ) b -  ~ ] 2  
i=1 (6) 

= [ P b - f i l  rW(:~) [ P b - f i ]  

That is, the coefficient vector a(x)  is selected to 

satisfy the following inequality condition : 

Jx (a (~) )  < J ~ ( b ) ,  for all b ~ R "  (7) 

In Eq. (6), wi(x) are the weight functions asso- 

ciated with the position x; of node i such that 

w,(x) are greater than 0 for all x in the support 
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domain (i.e., the region of non-zero values) of 

wi(x) (which can in general be a sphere, a rec- 

tangular parallelepiped, or an ellipsoid in 3-D), 

and n denotes the number of nodes. For example, 

the support domain of the weight functions wi(x) 

can be spheres in 3 -D;  and the weight func- 

tions w~(x) centered at each node x~ are usually 

adopted to be non-zero positive if the distance 

between nodes x; and x is less than a specified 

radius R~, but to be zero if the distance is greater 

than or equal to the radius R ,  in order to pre- 

serve the local character of the MLS approxima- 

tion. 

On the other hand, the n × m matrix P and the 

n × n diagonal matrix W(R) are defined respec- 

tively by 

P = [ p ( x l ) ,  p(x2), " ' ,  p (x . )  ] r (8) 

[ w~(:~) 0 "- 0 

W(R) = 0 w2(R) . . . . . .  (9) 
. . . . . .  " ' .  0 

0 "" 0 w~ (£) 

And the fictitious values z~ ~ of variable u at nodes 

i ( l ~ i ~ n )  are contained in the vector fl such 

that 

f i T - - [ ~ l ,  /~2, " " ,  ~ n ]  

(10) 
=[u(x , ) ,  u(x~), ..-, u(x,)3 

It is noted that the z~(l <--i<--n) are not the nodal 

values of the approximation function uh(x) .  

The method to approximate an one-dimension 

function by the moving least squares method is 

sketched in Fig. 1. At each position x = x ,  the 

u"(x) .... ~.-,,. 

\ /  .... i 
//" i 

/ :  T I 
] 

Fig. 1 

u~ (x) = pr (x)a(~-) 

, u(x,)=~' 

Z( ............ 

! u ~ (x,) 

l i 
I 

~ x i 

Conceptual explanation of the moving least 
squares interpolation scheme 

coefficient vector a(R) for local approximation 

can be obtained by applying the stationarity 

condition to the weighted discrete L2 error norm 

(6). The normal equation for minimizing the 

weighted discrete Lz error norm can be written in 

the following form 

A (£) a(~)  = B ( ~ )  fi (I I) 

where 

A (x) = P r W ( £ )  P 
B (~)  = P r W  (x)  (12) 

The coefficient vector a(~)  is used in the global 

approximation form (1). For convenience, R is 

replaced by x in the global approximation, 

because a local approximation point R can be 

extended to all points in the entire domain. This 

is usually known as the concept of moving proce- 

dure. 

3. Nodal  Basis  Funct ions  from M L S  
Interpolat ion Procedure  

Solving Eq. (11) for a(x)  and substituting it 

into Eq. (1) give a relation which may be written 

in the form of a linear combination of nodal 

shape functions, similar to that used in finite 

clement method, as 

n 
uh(x) = ~ r  (x) f i = ~  ~i~k~(x) (13a) 

i=1 

where 

~ r ( x )  = D r  (x)A-1 (x) p r W ( x )  (13b) 

o r  

m 
¢'i(x) = j ~ p j  (x) [ A - 1 p r w ] ~  (13c) 

In actual computations, various kinds of weight 

functions can be adopted for MLS approximation 

procedure. The condition required for the con- 

tinuity of the approximating function can be 

easily satisfied by changing the weight function in 

the MLS approximation procedure. In this work, 

we use the 4-th order spline weight function 

defined by 

d, ~ di di* 
w,(x) = 1-6 (Rii)+8 (Ri)-3 (~i),  if di=-ltx-xil]<-R~(14) 

t 0 , if d~-II x-xi [[>R~ 
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where R~ denotes the radius of support of weight 

function. It is noted that the 4-th order spline 

weight function (14) is C 1 continuous over the 

entire domain 22. 

4. Local  Symmetric  W e a k  form and 
Discret izat ion 

In this section, the local symmetric weak form 

is reviewed for the two-dimensional Poisson's 

equation : 

V2u(x) = f ( x )  in global domain 22 (15) 

where u is potential and f (x) is a given source 

function. The boundary conditions are specified 

along the entire boundary f=l-'uUfq, as 

u=z~ on Fu (16a) 

q(=Vu'n)  = 4  on Fq (16b) 

where u and ~ are the prescribed potential and 

normal flux, respectively, and n denotes the out- 

ward unit vector normal the boundary ft. 

In the present approach, a local weak form over 

a local sub-domain 22s will be used instead of 

global weak form. It is noted that the local sub- 

domain 3Qs is contained inside the global domain 

22, and it can be of an arbitrary shape containing 

a point x in question. 

To satisfy the equilibrium condition in a local 

subdomain 22,, in the average sense, the equilib- 

rium equation is weighted by a test function v and 

integrated over the local subdomain 22s. In this 

work, a penalty method is used to impose the 

essential boundary conditions, because it does not 

need any additional unknown variables (Zhu and 

Atluri, 1998). The local weighted residual equa- 

tion can be written as 

0 = £ ~  ( V 2 u - f )  vd22 
, for all v (17) 

where au denotes a penalty parameter to enforce 

the essential boundary condition. The boundary 

of the local sub-domain 22s is denoted by 322s. By 

integrating by parts, Eq. (17) is recast into a local 

symmetric weak form given by 

O=-~yu.VvdX2-~fvdf2+ £ (n.vgu) dF 
,f0rallv (18) 

-aL(~,,,rJu-~) vdF 

Since the interior of the global domain ~ ,  the 

essential boundary _F'u, and the flux boundary fq 
are mutually disjoint. And, since those are related 

by r ~ = ~  UfuUfq, the boundary of the sub- 

domain cosQ~ can be decomposed into disjoint 

subsets of 8Qs ('l ~ , 022s 0 fu, and 022s N F'q. By 

using this decomposition, together with the boun- 

dary condition (16b), Eq. (18) can be rewritten 

as follows : 

, for all v (19) 
- f  (n.vVu)dF+~J (u-~lvdr 

• ~,~s q/'u dOas~Fu 

If we restrict our attention to the test function 

v which vanishes at c~22sA~, then, Eq. (19) is 

reduced to 

O= ~ y u " V vdY2 + £ /vd~- f~,~,r Vq dF 
,forallv (20) 

-L~r (n'vVu)dF+a~L,,ro(u-f~)vdF 

Since the local symmetric weak form (20) holds 

for arbitrary local sub-domains containing the 

point x in question inside the global domain Q, 

we can construct each local symmetric weak form 

for each local sub-domain 22, centered around 

each nodal point x~. Because there is no restric- 

tion for the shape and size of the local sub- 

domains, the local sub-domain 22~ can be taken 

differently from the supports of nodal trial shape 

functions. As a special case, it can be the same as 

the supports of nodal trial shape functions. In the 

MLPG method, the local sub-domain is assumed 

to be the support of nodal test function v, cen- 

tered at a node i. If the size of local sub-domain 

is different from that of the support of nodal 

shape function for trial function ; or if the nodal 

test function is different from the nodal trial func- 

tion, the procedure becomes a Petrov-Galerkin 

approximation. On the other hand, if the size of 

local sub-domain is the same as that of the sup- 

port of nodal shape function for the trial function, 
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and furthermore, if exactly the same forms are 

used for nodal test and trial functions, it becomes 

the usual Galerkin approximation procedure. In 

this work, only the Galerkin approximation pro- 

cedure is presented, even though the MLPG 

method is not limited to a Galerkin approxima- 

tion. 

We assume that the nodal points and the sizes 

of supports of weight functions at each node are 

given for the MLS interpolation. The symmetric 

weak form for each nodal point x~ is constructed 

as follows : 

For all v that vanishes at OZ2sN~2, 
o= f,oVU.VvdS2+ f,,,fvd~2- fi,,, vqdF (21) 

df ls  d f l s  d~fls Nrq  

-~,,, (n.vVu)dr+auf~ (u-u)vdr 
tgQs rlru J~Qs fiFu 

where f2s (~) denotes the local sub-domain. As a 

special case in the present study, which is taken to 

be of the same size as the support of weight 

function w~(x) for x~. Thus, in the present study, 

the local sub-domain .Qs (i) is the same as the 

support of the nodal trial function, as well as the 

support of the nodal test function. 

The unknown variable u in this local symmet- 

ric weak form is approximated by the nodal shape 

functions obtained through the MLS interpola- 

tion procedure, 

?1 

u(x)  ~ - u h ( x ) =  Y] z~J'~./(x) (22) 
j = l  

where z~ ~ and ~ ( x )  denote the fictitious nodal 

potential values and the corresponding MLS 

nodal basis functions. The test function v for the 

local sub-domain .Qs (il is approximated by a line- 

ar combination of the nodal shape functions for 

nodal point Xs such that 

v(x) - - v h ( x ) =  9iCti(X) (23) 

where 3 i denotes the fictitious nodal value of 

the test function v. It is noted that the values of 

nodal test function v i ( x )  in Eq. (23) are zero at 

a/2 ,  ~ .O . 

By substituting Eqs. (22) and (23) into the 

local symmetric weak form (21), we obtain the 

following discretized equation given by 

j=IJ~]  J=lJ~gs ~Pu 

+ ~ . a u f  . ~'¢t,(sjaidl'+ f ,,~'(t~fdQ (24) 
j= l J aa~ , ,% Jan'; 

. . . .  v ¢',.qd['-a, ,, v ¢r,.udF for all v' 
a~'s Cllq JgQ] r,l"u ' 

Because Eq. (24) is satisfied for arbitrary 9 i, Eq. 

(24) can be rewritten in the form of 

K~.n°ae)fi=fT°ue in L2J i) (25a) 

n 

~= '~ ~'~r,r. +~a'~f',:, : (25b) 

g's' JalYs "11",~ Jags ") l'u 

By collecting the equations for individual each 

sub-domains £2J i), we can construct the matrix 

equation 

K f i = f  (26) 

5. Numerical Integration Algorithm 

In this section, an adaptive mesh-independent 

numerical integration procedure is proposed for 

the numerical integration of the local symmetric 

weak form in the MLPG method. It is well known 

that the prerequisites for numerical integration 

are the determination of locations of sampling 

points, the corresponding weights, and the corre- 

sponding shapes of the integration domains. The 

integration domains can be non-overlapping or 

overlapping with each other. Depending upon 

this character of integration domains, meshless 

methods may be classified into two categories. 

In the MLPG method (Atluri and Zhu, 1998a, 

b), the supports of nodal test functions are taken 

as integration domains which overlap with each 

other, and regularly distributed integration points 

in the sub-domains are used as shown in Fig. 2. 

This integration procedure has many advantages, 

such as the true meshless character (Atluri and 

Zhu, 1998a). However, it has some inflexibility in 

the sampling of integration points when we deal 

with randomly distributed nodes, because the 

sampling points for integration are always located 

regularly in the integration domain, irrespective 

of nodal distribution. 



An Adaptive Mesh-Independent Numerical Integration for Meshless Local Petrov-Galerkin Method 991 

Fig. 2 

Sub-domain 

node 

Regular arrangement of integration points 
over a sub-domain 

To increase the flexibility in MLPG method, 

without sacrificing its non-element integration 

character, it is desirable to locate the integration 

points by taking into account the non uniformity 

of the given nodal distribution, while preserving 

the meshless nature at the same time that does 

not need integration meshes (non-overlapping 

integration domains).  If the integration points are 

sampled adequately to consider a given irregular 

nodal distribution, the next remaining question 

is how we can define the integration domains 

for sampling points, without using integration 

meshes. One of the answers to this query may be 

the non-element interpolation technique itself, 

such as the Shepard or the MLS (moving least 

squares) interpolations. In this line of thought, an 

alternative non-element numerical integration 

procedure is proposed here. 

Let us assume that the sampling points are 

given as x~( l  <-~k~Nq), in order to integrate the 

function A (x) over the whole domain g2 

f A(x)  dO (27) 

Then, the integrand A ( x )  can be approximated 

by diffuse interpolation functions such as the 

Shepard function or the MLS functions, 

A(x)  ~ ~A(x~ q~) ~k(x) (28) 
/ t = l  

where q~h(x) are the shape functions obtained 

from non element interpolation procedure. The 

whole integration domain .Q can be decomposed 

into the supports of the shape functions q~k (X), 

N Nq 

[ A  (x) d ~  ~,A (x~q')/~o~ ( x ) d ~ -  = 5-],A (x~ q~) wl q' (29) 
dD k = l  flAk k = l  

where Ak denotes the supports of the shape 

functions qok (x) inside g2. The support Ah of each 

function cph(x) overlaps with each other and 
satisfies 

Y2= ~J Ak (30) 
k = l  

If the integration points are chosen, the weight 

value w~ q) can be obtained by integrating the 

corresponding qOk(X). In the present work, the 

Shepard interpolation is chosen to approximate 

the integrand A (x),  because the Shepard shape 

function is much easier to evaluate than the MLS 

shape function. In other words, no matrix facto- 

rization cpk(x) is required to evaluate the She- 

pard shape function, unlike in the case of the 

MLS shape functions. In this work, the Shepard 

function is integrated numerically. Although this 

numerical evaluation of the weight value is an 

additional computational burden, which is minor 

compared to the main integration procedure 

where the MLS function should be evaluated 

through the complex computational procedure. 

It is noted that the same integration points x~ q~ 

and the same weight w~ q~ are used for every sub- 

domain f2s <i). By using the proposed integration 

scheme, the volume integrals in Eq. (25b) are 

approximated as follows: 

f~ ,v  ~i. v ~dS~ ~- ~ V ¢~ (x~q') • V ¢,j (x~ q)) w~ ~' 
k=1 (31) 

~, ¢~fdS2-~ : ~(x~ ~) f (x7 ~) w~ q~ 

In this work, the trapezoidal rule is used for 

boundary integration. To properly consider the 

irregular nodal distribution, we locate the inte- 

gration points uniformly between the neighboring 

nodes. Nodes i and j are defined to be neigh- 

boring nodes with each other, if the intersection 

of their supports is a non-empty set. In this work, 
when we find the neighboring nodes in this work, 

a fictitious radius of support which is 1.5 times 

larger than the real radius of support is used to 
include sufficient information of nodal distributi- 

on. The nodal points are also selected as integra- 

tion points. Fig. 3 shows how to place the inte- 
gration points when we have an irregular nodal 
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Neighbor ing nodes 
• . . of node I 

.* Node K " . . . .  ' " . 

,," 
PlaCement of ' ,  ",~ " • " + 

~ o m  Plac+ment of ain ~ i n t e g r a l i ° n  poink~ 

Fig. 3 Placement of integration points according to 
nodal distribution 

distribution. Furthermore, if the distance between 

integration points is smaller than a given toler- 

ance, then the integration points are merged to- 

gether to avoid excessive large number of integra- 

tion points. The size of support As of  shape 

function cph (x) is selected to be small as possible, 

while preserving the condition in Eq. (30). 

6. Numerica l  Tests  

By using the presently developed numerical in- 

tegration procedure, with a local symmetric weak 

form and MLPG, several numerical examples are 

worked out to investigate the numerical charac- 

teristics of the proposed integration method. As 

well, the results are compared with analytical 

solutions. 

6.1 Analyses of bar problems 
A bar under a tip load is analyzed with irregu- 

larly distributed nodes, as shown in Fig. 4, and a 
bar under a cubic distributed load is analyzed 

with irregularly spaced nodes, as shown in Fig. 5. 

In the computation, the linear polynomial  p -  

basis and the 4-th order spline-weight function 

are used. The radius of support of node xi is 

chosen 2.4 times as large as the maximum of  

[ x~--xi-1 [ and [xi+l--xi  1. For  the numerical in- 
tegration, 6 points are placed between neigh- 
boring nodes, and the nodal points are included 
as integration points. To merge the integration 

2.00 r..E.-_ L _ _ _ . _ . z i ~ . ~  . . . . . . . . . . . . . . .  - -  J '  

/ - + - - ~ - -  n u m  u ( x )  

- - - ~  .. . .  n u m  d u / d x  / [ 
1 . 6 0  

: TT + 
X 1 . 2 0  

x 
"O I~1 • . . . . . . .  

~" 0.8o 

0.40 

0.0o- 7 . . . . . . . . . . . . .  
- 1 . 0 0  -0 ,6O 0 . 0 0  0 . 5 0  1 . 0 0  

x 

Fig. 4 Numer ica l  solut ion o f  a bar under a t ip  load, 

by using i r regular ly  d ist r ibuted nodes 

x 

x 

4.00 

8 . 0 ( I  . . . . . . . . . . . . . . . . . . . . . . . .  

r - - + ~ - ' -  n u m  u(x) 

! i  - ' - ~  .... num duldx 

6,00 i!,i - -  exactu(x) 

i - -  exact du/dx 
i + . . . . . .  

2 + 0 0  . 
I 

0 .6O 
i 

- 1 . 0 0  

Fig. 5 

~ - ' -  . . . . . . . .  i - -  - -  i . . . . .  T i - -  - ~  

\.  
- 0 . 5 0  0 . 0 0  0 . 5 0  1 . 0 0  

x 

Numerical solution of a bar under a cubic 
distributed load, by using irregularly dis- 
tributed nodes 

points for avoiding a large number of integration 

points, the tolerance is selected set by 0.1 x 

(length of ba r ) / (no ,  of  nodes - l ) /7 .  The size of 

support of shape function ~Pk(x) for integration 

point x~ q) for numerical integration is chosen 0.7 

times as large as the maximum of [x~q)- -x~l  I 
and [ x ~ l - - x J ,  °~ [. From the result of Fig. 4, it 
is identified that the constant strain condition 
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1.0E-1 . . . .  i T " 7 ....... 

: ~ ± ~ L 2 e r r o r ( g p t s . ) .  

. . . .  ~ ' - - -  L2 error ( 6 pts ) i 
L 
j - -  H1 error ( 9  pt8 ) i 
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....... Z .... • ! 

_ / , , " " i  ' /  

. ; y  . . . . . . .  i , 

1.0E-2 1 0E-1 50E-1 
Normalized nodal distance 

1/(no. of nodes-  1) 

Fig. 6 Convergence results of a bar under a linearly 
distributed load 

is properly preserved by the present algorithm. 

Fig. 5 shows a little deviation in the derivative 

at the tip of bar. However, the calculated dis- 

placement shows excellent agreement with the 

exact solution, even though irregularly distributed 

nodes are used to analyze the problem. 

In Fig. 6, convergence results are given, for the 

problem of a bar under a linearly distributed 

load. The linear polynomial p-basis, the 4-th 

order spline-weight function, and the value of 

2.4 times nodal distance (2.4Ax) for radius of 

support are adopted in numerical simulation. 

For the numerical integration, 6 points (or 9 

points) are placed regularly between neighboring 

nodes, and the size of support of shape function 

~k(x) for integration point x~, q) is chosen 0.7 

times as large as the maximum of  Ix~?)-x~,~, I 
and [x~,~l--x~, q) I. In cases of 6 points and 9 

points, the tolerances for merging the integration 

points are selected as 0.1 x (length o fba r ) / ( no ,  of 

nodes - l ) /7  and 0. IX(length of bar ) / (no ,  of 

nodes- l ) /10,  respectively. To observe the con- 

vergence, two relative error norms are defined, 
respectively 

Relative L2 error norm 
(' f~l U.~m--U~x~. I~dx 

V" f~l u~=. 12dx 

Relative H 1 error norm 

y"f~l U.=m--U~,~, 12+1 U'.u~--U~. IZdx 

(32) 

(133) 

~1 u~=. I~+1 u;=. 12dx 

The results show that the convergence rates L2 

and H ~ error norms are approximately 2 and 1, 

respectively. It is also shown that the convergence 

rate is improved, in proportional to the number of 

integration points. 

6.2 Poisson's equation in 2D 
The convergence test is performed for the 

Poisson's equation• Regular nodal distributions 

of 25(5×5) ,  81(9×9) ,  289(17×17).  and 1089 

(33)<33) are used to study the convergence of 

the present algorithm. The source function in the 

Poisson's equation is given by f ( x ,  y ) : 1 2 y  2 

(x4--16)+12xZ(y4--16).  To measure the con- 

vergence rate. we use the relative Lz and n 1 error 

norms defined respectively by 

/f~l V u.=m- u~ac, 12dQ 
Relative L2 error norm: ~ (34) 

"f~l V' uex,,. 12 dS2 

Relative H 1 error norm : 

\/"fJ U,um-Uexac, 12tl Vllnum--V~lexact I2&Q (35) 

The radius of support of nodal trial shape func- 

tion (si(x) is taken as 2.52Ax (Ax denotes nodal 

distance like in Fig. 8(a)) .  The linear p-basis, 

and the 4-th order spline weight function are 

used. In numerical integration, 3 points (or 5 

points) are placed between neighboring nodes, 

and the nodal points are selected as integration 

points. To avoid the excessive number of integra- 

tion points, the integration points are merged 

together if the distance is smaller than 0.15Ax. 

The size of support of shape function cp~(x) 

for integration point x~, q) is chosen as Ax/3 (or 
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Fig. 7 Convergence rates of the Poisson's equation 
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(a) Regular nodal distribution 

A x / 5 ) .  Like as in Fig. 6, the results shown in 

Fig. 7 also show that the convergence rate is im- 

proved as the number  o f  integration points in- 

creases. In the case of  5 integration points be- 

tween neighboring nodes, the convergence rates 

of  L z  and H ~ error norms become much higher 

than 2 and 1, respectively, al though only linear 

/)-basis is adopted in the simulation.  And  the 

convergence rates of  the proposed scheme are 

compared with those of  the or iginal  M L P G  8 ×32  

integration scheme (8 points Gaussian quadrature  

in the radial direction and 32 points t rapezoidal  

integration in the circumferencial  direct ion) .  In 

case of  the present 5 points integration, the total 

number  of  integration points is around 25 times 

of  the number  of  nodes, and in case of  the original  

integration, the number  of  integraion points in 

each local sub-domain  is 256(8×32)  points. 

Even though the number  of  integration points per 

node in the present method is less than that in the 

original  M L P G  method, one can observe that the 

proposed integration scheme gives improved and 

(b) Displacement u(x)  

! 

F i g .  8 

(c) Derivative au (x)/~X (d) Derivative tgu(x) /ay  

(a) Regular nodal distribution (L2 relative error norm : 0.15%) (b) Displacement u(x)  obtained by 

regularly distributed nodes (c) Derivative c l u ( x ) / c l x  obtained by regularly distributed nodes 

(d) Derivative o~u (x)/c3y obtained by regularly distributed nodes 
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robust convergence rates compared to the original 

integration scheme. 

To observe the difference in the solutions be- 

tween regularly distributed nodes and randomly 

distributed nodes, the Poisson's equation with 

the source function o f f ( x ,  y ) :  (2xZ+2y2--16) 
is analyzed. In the simulations of Fig. 8 and 

Fig. 9, the linear p-basis,  81 nodes, the 4-th order 

spline weight function, and 2.52Ax of radius of  

support of nodal trial shape function ~ki(x) are 

adopted. The nodal distance A x  in each case is 

shown in Fig. 8(a) and Fig. 9(a) ,  resepectively. 

For  the integration, 5 points arc placed between 

neighboring nodes. The tolerance is taken as 0.15 

A x  to merge the integration points, and the nodal 

points are also included as integration points. The 

size of support of shape function q~h (x) for inte- 

gration point x(fl > is chosen as Ax/5.  The exact 

solution is presented as surface, and the numerical 

solution is denoted by points. The displacements 

from both cases show good agreements with the 

exact solution. The relative Lz error norms of 

regular and irregualr cases are 0.15%, and 1.26%, 

respectively. However, it is observed that the 

derivatives near the boundary in the irregular case 

show large error compared to the regular case. 

A problem with a local high gradient is 

simulated with randomly located nodes. The 
source function is given by 

f(x, y)=e 14-x')14 Y:l-~6(4xZ(4-y2)~-2(4-y)Z+4yZ(4-x2)z-2(4-x2)) (36) 

In the region of high gradient, more nodes are 

randomly located compared to other region. The 

randomly located nodes are presented in. Fig. 10. 

In the simulation of Fig. 11, linear p-basis,  160 

nodes, and the 4-th order spline weight function 

are utilized. The radius of support of  the nodal 

trial shape function ~'i(x) for each node is 

adopted as 2.52Ax (The distance of Ax  is shown 

in Fig. 10). For the integration, 5 points are 

placed between neighboring nodes. As mentioned 

before, if the integration points selected are too 

close to each other, they are merged together. The 

tolerance for merging the integration points is 

2 

15 

1 

05 

0 

-05 

-1 

-15 

-2 

(a) 

• o e • • 

• • o 

e 

° e  ¢. e • 

, e  • • 

e o • • 

.2 -1.5 -~ -05 0 05 '[ I 5 
X 

Randomly distributed nodes (b) Displacement u(x) 

Fig. 9 

(c) Derivative c3u (x)/Ox (d) Derivative Ou (x)/Oy 

(a) Randomly distributed nodes (Lz relative error norm : 1.26~o) (b) Displacement u (x) obtained by 
regularly distributed nodes (c) Derivative au(x)/Ox obtained by regularly distributed nodes 
(d) Derivative Ou (x)/c~y obtained by regularly distributed nodes 
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adopted as 0.15Ax, and the nodal  points are 

also included in integration points. The radius of  

support  of  shape function ~Pk(x) for integration 

point  x~ q) is chosen as A x / 5 .  In Fig. 11, the 

numerical  results are compared  with the analy- 

tical solution. The exact solution is presented as 

surface, and the numerical  solution is denoted by 

2 

1.5 

1 
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~" 0 
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Fig. 10 Randomly distributed nodes 

points. Even thouth there is some error in the 

vicinity of  the peak point, we can identify that the 

present a lgori thm gives an acceptable solution 

when we deal with randomly located nodes. In 

the s imulat ion of  Fig. 12, the radius o f  support  of  

nodal trial shape function !/r~(x) is decreased to 

2.0Ax, while preserving the other parameters 

adopted in the s imulat ion of  Fig. 11. The result 

presented in Fig. 12 shows that the numerical  

results is greatly improved in the vicinity of  the 

peak point, as the support  size of  nodal  trial 

function is decreased. F rom the compar ison be- 

tween the solutions of  Fig. 11 and Fig. 12, it can 

be noticed that a smaller support  size of  nodal  

trial shape function gives an improved numcrical  

solution in the region where the solut ion is chang- 

ed suddenly. To assess the accuracy of  the pro- 

posed scheme, the number  of  integration points 

required in the original  M L P G  integration to 

achieve the same degree of  accuracy for the ex- 

ample of  randomly distributed nodal  points in 

Fig. 12 is presented in Fig. 13(a) and Fig. 13(b). 

In the present case, the total number  of  integra- 

tion points is around 10 times the number  of  

nodes, and in the original  M L P G  integration 

Fig. 11 Comparison between the exact solution and 
the numerical solution obtained by using 
2.52Ax of radius of support of nodal trial 

shape function (L2 relative error norm : 5.91 
%, Relative error norm at the center : 8.94%) 

Fig. 12 

0 . 7 5  

3 25 

? 

Comparison between the exact solution and 
the numerical solution obtained by using 

2.0Ax of radius of support of nodal trial 

shape function (L2 relative error norm : 4.46 
%, Relative error norm at the center : 1.32%o) 
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Fig. 13(a) 

i FI L2 Error (Orignal MLPG) ~__ 

[ t [3L2Error(Current lnteg.} '  ] 

&32MLPG l~48MLPG 15~60MLPG 16~64MLPG 

The number of integration points requir- 
ed in the original MLPG integration to 
achieve the same degree of L2 error norm 
accuracy for the example of randomly 
distributed nodal points 
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[] Relative error norm at the center " 
(Original MLPG) 

i El Relative error norm at the center 
L. (Current Integ.) ..... 

8x32MLPG 12x48MLPG 16x64MLPG 2Q~80MLPG 

The number of  integration points requir- 

ed in the original MLPQ integration to 

achieve the same degree of relative error 

norm accuracy at the center (peak point) 

for the example of randomly distributed 

nodal points 

more than 900(15×60) integration points are 

required in each local sub-domain to attain the 

comparable L2 error norm accuracy 4.46,%0. In 

case of relative error norm I unum-Ue:, I/I uex, 
at the center (peak point),  comparable accuracy 

1.32% is not obtained even by 1600(20×80) 

original integration as shown in Fig. 13(b). The 

comparison shows that the proposed method is 

more flexible in handling the randomly distri- 
buted nodal points. 

Concluding Remarks 

In MLPG (Meshless Local Petrov-Galerkin) 

method (Atluri and Zhu, 1998a, b), the supports 

of nodal test functions are taken as integration 

domains which overlap with each other, and reg- 
ularly distributed points in the sub-domains are 

used for numerical integration of the local sym- 

metric weak form. This integration procedure has 

many advantages, such as truly meshless character 

(Atluri and Zhu, 1998), compared to other inte- 
gration schemes. 

In the present work, an adaptive mesh-inde- 

pendent numerical integration algorithm is pro- 

posed for the MLPG method, to increase the 
flexibility in dealing with irregular nodal distri- 

bution. To properly consider the irregular nodal 
distribution, the integration points are located 

between the neighboring nodes, and the nodal 

points are also selected as integration points. If 

the distance between integration points is smaller 

I than a given tolerance, then the integration points 

are merged together to avoid excessive large 

number of integration points. Furthermore, to 

preserve the non-element integration nature, we 

adopted the Shepard function to approximate the 

integrand in the local symmetric weak form by the 

values of integrand at the integration points. This 

procedure makes it possible to integrate the local 

symmetric weak form without any non-overlap- 

ping meshes for arbitrarily given integration 
points. 

By using the proposed scheme, convergence 

tests are performed, and several numerical ex- 

amples are worked out. Through the numerical 
results, it is convinced that the present algorithm 

gives reasonable solution when we deal with 

randomly distributed nodes as well as regularly 

distributed nodes. However, the proposed algo- 

rithm to place the integration points is only one of 

various possibilities, and may not be the best one. 

Therefore, further research efforts are required to 

find the optimal integration points from which 

more robust and accurate solution can be ob- 

tained with a minimum computational cost. 
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